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Abstract .  

Near-infrared tunable diode laser (NIR-TDL) spectroscopy is used to quantify hydrogen 
fluoride (HF) gas produced during fire-suppressant testing of Halon alternatives. Results of 
comparisons with other techniques for measuring HF gas concentrations are discussed. 
Measurements of HF gas produced in laboratory- and real-scale fire-suppression testing are 
presented. The necessity for time-resolved measurements during testing of suppression systems 
designed to scavenge HF gas is demonstrated. 
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1. Introduction 

Fire and explosion suppression is of critical importance onboard land combat vehicles. 

Currently, Halon 1301 (CF3Br) is employed to suppress fires and explosions in most military 

vehicles. However, due to its high ozone depletion potential (ODP), Halon 1301 was banned from 

production by international agreement [1] as of 1 January 1994. Currently, a service-wide program* 

is underway to identify near-term environmentally acceptable Halon alternative technologies. 

Important properties for successful Halon alternatives are high-suppression efficiency, low ODP, 

low-suppressant residue after use, low electrical conductivity, stability under long-term storage, and 

nontoxicity prior to and during dispersion. Recent work [2] has shown that hydrogen fluoride (HF) 

gas is the principal toxic gas produced during fire suppression by Halon 1301 and by fluorocarbon- 

based fire suppressants. Therefore, for fluorocarbon-based Halon alternatives, minimization of HF 

gas production during fire suppression is an important criterion. The work presented here describes 

our efforts using near-infrared tunable diode lasers (NIR-TDL) to measure HF gas produced during 

fluorocarbon-based chemical suppression of laboratory- and real-scale fires. 

2. Background 

When a projectile penetrates the hull and fuel cell of a land combat vehicle, fuel-cell penetration 

may result in a fine mist of fuel being dispersed into the crew compartment. The ensuing "mist 

fireball explosion" [3] is extinguished within 250 ms of detection, using the currently deployed 

Halon 1301 suppression system. Diagnostic equipment designed to measure HF gas produced during 

testing of Halon alternative systems needs to provide data on a time scale shorter than the 

suppression event. The extreme reactivity of HF gas dictates the additional requirement that the 

measurement be made in situ. 

Next-Generation Fire-Suppression Technology Program, administered by the Department of Defense (DOD). 

1 



For HF measurement, NIR-TDL absorption spectroscopy provides the midrange sensitivity 

(50-5,000 ppm), speed of data collection, and ability to use low replacement-cost optics and 

detectors necessary for data sampling in hostile environments. Relatively low-cost narrow band 

diode lasers emitting N1R radiation at wavelengths absorbed by HF gas (~1.3-um 

wavelength-overtone transition) are commercially available. Diode lasers emitting in the mid- 

infrared region at wavelengths where HF absorbs (2.5-pm wavelength-fundamental transition) are 

not yet commercially available. 

3. Experimental 

Figure 1 shows a schematic of the experimental setup and signal-processing electronics. The 

experimental apparatus does not appreciably change according to the type of fire being investigated. 

For experiments described here, an InGaAsP distributed feedback (DFB) NIR-TDL (Sensors 

Unlimited, Inc.) operating near 7,665 cm"1 (corresponding to P(2)) of the first vibrational overtone 

of HF [4]) is mounted in a temperature-controlled laser diode mount (ELX Lightwave model LDM- 

4980). The temperature of the diode mount is controlled by a thermoelectric temperature controller 

(ILX Lightwave model LDT-5412). Laser diode current and internal thermoelectric cooler (TEC) 

control are provided using a laser diode controller (ELX Lightwave model 3700). A low-frequency 

sawtooth modulation (-100 Hz, Tektronix FG 504 Function Generator) is combined with a higher 

frequency modulation (-20 KHz, sine output from an SRS Model 830 DSP lock-in amplifier). This 

modulation is superimposed onto the laser drive current, allowing the laser wavelength to be scanned 

through the spectral region of interest (low-frequency modulation) while also providing a high 

frequency wavelength "dither" to allow second harmonic signal detection. 

The wavelength modulated radiation from the laser diode is fiber-coupled. This fiber is 

terminated by a gradient index (GREN) lens (Sentech Systems, Inc.), which collimates the laser 

radiation. The GRIN lens-tipped fiber is placed into a small test rig designed to maintain fiber and 

detector alignment. Laser radiation is detected using an InGaAs detector. The path length from grin 

lens to detector istypically 10 cm. The modulated detector signal is demodulated at twice the higher 
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Figure 1. A Schematic of the Experimental Apparatus and Signal-Processing Electronics Used 
in These Experiments. V Describes the Signal Prior to Demodulation, and x" 
Describes the Signal Following Demodulation at Twice the Reference Frequency. 

frequency modulation (SRS Model 830 DSP lock-in amplifier), the second derivative line shape is 

displayed on an oscilloscope (LeCroy Model 9354), and the output from the oscilloscope is stored 

on a laptop computer. 

4. Measurements in Particulate-Matter-Laden 
Environments 

Normal fixed wavelength transmission spectroscopy cannot distinguish between light attenuation 

(measured at the detector) resulting from gas absorption or light scattering such as might occur in 

a smoke- or soot-filled environment. Partly for this reason, we employ derivative spectroscopy to 

exclude contributions to light attenuation by scattering from paniculate matter. In this method, the 

laser output wavelength is scanned through a wavelength range, which includes the wavelength of 



absorption of the gas species of interest (HF). A lock-in amplifier is used to measure the change in 

detector signal intensity with the change in wavelength. Attenuation of laser radiation by a ro- 

vibrational transition of a small gas molecule is detected because the wavelength range of the scan 

is several times the width of the spectral absorption feature (typically on the order of 0.1 cm"1 at 

atmospheric pressure). Because light scattering by paniculate matter is nearly constant over the very 

small wavelength range of the laser scan, the change in detector signal intensity with the change in 

wavelength is effectively zero in the absence of any absorbing gas. 

Second harmonic detection using TDLs has been extensively discussed in the literature [5]. 

Figure 2 shows a graphical simulation of the signal processing employed in these experiments. 

Briefly, the laser output wavelength is slowly scanned through a spectral region where HF gas 

absorbs (in this case, P(2) of the first vibrational overtone). The absorption in the absence of any 

modulation may be seen in the upper trace of Figure 2. A small-amplitude high-frequency 

modulation is superimposed on the laser drive current (middle trace in Figure 2). Demodulation at 

twice the frequency of the small-amplitude high-frequency laser drive modulation yields the second 

derivative signal shown in the lower trace in Figure 2. It should be noted that the upper trace in 

Figure 2 shows that the laser diode output power is a nonlinear function of wavelength. While this 

is nonideal behavior, in our experience, this is a common trait of commercially available laser 

diodes. The nonlinear power dependence on wavelength causes the sloping baseline (exaggerated 

here for illustration) for the second derivative signal in Figure 2. For measurements at extremely low 

concentrations or for gases with small absorption cross sections, laser diode output power 

dependence on wavelength may affect limits of detection. 

5. Calibration 

Calculation of HF gas concentration relies upon the Bouguer-Lambert Law [6], which states that 

for optically thin media at the absorption line center, the negative logarithm of the fraction of 

transmitted light intensity (referred to as absorbance, A) is equal to the absorption coefficient of the 

molecule of interest (a) times path length (L) times pressure (P): A = aLP. Since the absorption 
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Figure 2. A Graphical Simulation of Signal Processing for 2f Measurement of HF Gas 
Concentrations. The Slope in the Baseline Is Caused by the Change in Laser Diode 
Output Power With Wavelength. 

coefficient (a) is constant and L is known, a measurement of absorbance (A) is sufficient to 

determine pressure (P). The second derivative signal peak height may be shown [7] to be 

proportional to absorbance (A): 

x'VV = kA. (1) 

Here, x" is the peak height (peak to trough) of the second derivative signal (volts), V is the direct- 

current (DC) voltage measured by the detector in the absence of any absorbance, and k is a constant 

that includes the measuring instrument and optics function. Letting S, denoted as 2f signal peak 

height (peak to trough), equal x'VV yields 

S = (kcc) LP. (2) 



The slope of a plot of LP vs. S provides the value of ka. A calibration of the system using 

known concentrations of the absorbing gas must be performed to determine the value of ka. Once 

this value is known, the HF gas pressure (P) may be obtained directly from equation (2). Care must 

be exercised so that HF degradation of optical surfaces during measurement does not affect the value 

of ka, since this value is instrument-function-dependent. For this reason, calibration should be 

performed at the beginning and end of each measurement set. Additionally, for HF concentrations 

that attenuate more than 5% of the incident light, the linear relationship between HF gas pressure and 

2f signal peak height may no longer hold [7]. 

6. Comparison With Other Techniques 

A flow cell was constructed to allow simultaneous measurement of HF gas mixtures (HF in N2) 

using NIR-TDL absorption spectroscopy, Fourier transform infrared (FTIR) spectroscopy, and using 

a fluoride ion selective electrode (ISE). The flow cell is designed with five radial sampling ports at 

four longitudinal distances from the gas inlet port. All measurements were made at atmospheric 

pressure. A schematic of the flow cell is shown in Figure 3. Results from measurements of HF gas 

using the three techniques are shown in Figure 4. The limit of detection (LOD) of HF gas using the 

NIR-TDL absorption spectroscopy apparatus described here is approximately 40 ppm. Calibration 

of the FTIR data used the peak absorbance of the R(3) line of the fundamental (1 +- 0) vibrational 

transition. The limit of detection of HF gas using FTIR absorption spectroscopy was approximately 

10 ppm. The absorption techniques give similar limits of detection because the increased signal-to- 

noise ratio achieved using phase-sensitive detection with the NIR-TDL (2 <- 0) is offset by the higher 

absorption coefficient for the fundamental transition measured using FTIR absorption spectroscopy. 

The nonlinearity of the FTIR absorbance vs. concentration data is caused by an interpolation error 

that occurs because the instrument resolution (0.5 cm"1) is large compared to the linewidth being 

measured. Fitting the entire rovibrational envelope of the FTIR spectrum results in improved 

linearity. The limit of detection for HF gas using ISE was approximately 1 ppm. It should be 

pointed out that the ISE measures total fluoride ion concentration, so the technique is unable to 

distinguish between HF and CF20, which is produced in appreciable quantities during chemical 

suppression of large-scale fires [2]. 
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7. Results and Discussion 

Measurements of HF gas concentrations in well-controlled optically thin environments, such as 

described in the previous section, are necessary to check on instrument performance and calibration 

but may not reveal difficulties encountered in many laboratory- and real-scale tests. In this section, 

we describe measurements of HF gas using NIR-TDL absorption spectroscopy in an atmospheric 

pressure opposed-flow propane/air flame suppressed by C3F7H (trade name FM-200) and in a 30-kW 

heptane/air pan fire during extinguishment by a hybrid suppression system (C3F6H2 [trade name 

FE-36] plus particulate) designed to scavenge HF gas. 

7.1 Laboratory Flame-Suppression Studies. Figure 5 shows a schematic of an opposed-flow 

burner apparatus and the positioning of the fiber-optic GRIN lens assembly and detector used to 

measure HF gas produced in a propane/air/fluorocarbon flame. By varying the mass flow rate of fuel 

and oxidizer for a given flame in the opposed flow burner, the mole fraction of a given suppressant 

needed for extinguishment may be varied. The ability to vary the "strength" of a flame in the 

opposed flow burner (strength being inversely proportional to the ratio of diffusion to chemical 

times, referred to as the Damkohler number) [8] allows flames of different strengths to be 

investigated, and allows for a ranking of Halon alternatives according to their flame-suppression 

efficiency. 

Figure 6 shows the results of NIR-TDL measurement of HF gas produced in a propane/air 

opposed-flow flame (strain rate = 50 s"1) to which 1% C3F7H (trade name FM-200) has been added 

to the air stream. To generate this data, the fiber-optic GRIN lens assembly and detector were kept 

fixed in position and the burner assembly was translated vertically. In this figure, raw data (peak to 

trough distance of the 2f waveform) are represented by symbols, and data corrected for changes in 

baseline DC level are shown by a line. The change in DC baseline level as different heights in the 

flame are probed is caused by density gradients that cause beam steering when the line of sight is in 

the vicinity of the luminous zone of the flame. Using 2f detection, these beam steering-induced 

errors may be compensated for as long as some laser radiation reaches the detector. The case where 
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Figure 5. Schematic of the Atmospheric Pressure Opposed-Flow Burner, Fiber Optic 
Coupled to GRIN Lens for Delivery of Laser Radiation and InGaAs Detector 
Element. 

no correction is possible may be seen in the region from 7 to 8 mm from the oxidizer duct. In this 

region, no laser radiation was incident on the detector. 

7.2 Field Flame-Suppression Studies. Figure 7 shows results of NIR-TDL measurement of 

HF gas in a test designed to measure the effect of particulates designed to scavenge HF. For these 

tests, a fiber-optic GRIN lens and detector assembly (path length = 10 cm) was placed in a 1.5-m3 

cubic enclosure near an air-fed liquid heptane pan fire (fire size approximately 30 kW). After 

allowing the fire to burn uninhibited for 15 s, the enclosure was flooded with 10% by volume C3F6H2 

(trade name FE-36), with and without the paniculate matter additive.   A new data point was 
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Figure 6. HF Gas Absorption vs. Distance From the Oxidizer Duct for an Atmospheric 
Pressure Opposed-Flow Propane/Air Flame to Which 1% C3F7H Has Been Added 
to the Air Stream. The Symbols Are Raw Data, and the Line Represents the Data 
Corrected for Fluctuations in DC Baseline Signal Level. 

measured every 10 ms. Figure 7 shows that the rate at which HF gas concentration decreases after 

peak concentration is reached is fastest for the fire extinguished using FE-36 to which particles have 

been added. For this test, the measurement indicates that the paniculate matter added to the 

fluorocarbon-based suppressant (FE-36) successfully reduced the time-weighted average HF 

concentration. 

8. Conclusion 

NIR-TDL laser absorption spectroscopy is an extremely useful tool for measuring HF gas 

concentrations produced during fire suppression by fluorocarbon-based suppressants. The low cost 

of fiber optics and detectors allows for real-time in-situ measurement of HF gas in hostile 

environments. Care must be taken to ensure that calibration is maintained during testing because 

most optic surfaces are damaged during measurement. 

10 



2500 

2000 

S 1500 
c o 

§ 1000 
e o 
O 
3 o 

Suppression by C3F6H2 plus 
HF scavenging agent 

Suppression by C3F6H2 

500 

-500 
20 40 60 80 100 

Time (seconds) 

120 140 160 180 

Figure 7. HF Gas Concentration vs. Time for Heptane Pan Fires Suppressed by C3F6H2 With 
and Without Addition of HF Scavenging Agent. Note the Difference in the Rate at 
Which HF Gas Concentration Decreases With and Without Scavenging Agent. 

Future experiments will involve multiplexing of several lasers to enable multiple species to be 

measured using one fiber and one detector. Additionally, recent advances in laser fabrication have 

made diode lasers at wavelengths near 2 urn commercially available. This advance improves limits 

of detection for many species by decreasing the quantum number change in absorption, as well as 

enabling measurement of species whose highest lying fundamental has, up to now, been out of reach 

of commercially available NIR laser diodes. 
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2. Date Report Received  

3. Does this report satisfy a need? (Comment on purpose, related project, or other area of interest for which the report will 
be used.)  

4. Specifically, how is the report being used? (Information source, design data, procedure, source of ideas, etc.). 

5. Has the information in this report led to any quantitative savings as far as man-hours or dollars saved, operating costs 

avoided, or efficiencies achieved, etc? If so, please elaborate.  

6. General Comments. What do you think should be changed to improve future reports? (Indicate changes to organization, 
technical content, format, etc.)  

Organization 

CURRENT                            Name E-mail Name 
ADDRESS   

Street or P.O. Box No. 

City, State, Zip Code 

7. If indicating a Change of Address or Address Correction, please provide the Current or Correct address above and the Old 

or Incorrect address below. 

Organization 

• OLD Name 
" ADDRESS 

Street or P.O. Box No. 

City, State, Zip Code 

(Remove this sheet, fold as indicated, tape closed, and mail.) 
(DO NOT STAPLE) 


